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Abstract The constant appearance of algorithms and problems in data mining makes impos-
sible to know in advance whether the model will perform well or poorly until it is applied,
which can be costly. It would be useful to have a procedure that indicates, prior to the applica-
tion of the learning algorithm and without needing a comparison with other methods, whether
the outcome will be good or bad using the information available in the data. In this work,
we present an automatic extraction method to determine the domains of competence of a
classifier using a set of data complexity measures proposed for the task of classification.
These domains codify the characteristics of the problems that are suitable or not for it, relat-
ing the concepts of data geometrical structures that may be difficult and the final accuracy
obtained by any classifier. In order to do so, this proposal uses 12 metrics of data complexity
acting over a large benchmark of datasets in order to analyze the behavior patterns of the
method, obtaining intervals of data complexity measures with good or bad performance. As a
representative for classifiers to analyze the proposal, three classical but different algorithms
are used: C4.5, SVM and K-NN. From these intervals, two simple rules that describe the
good or bad behaviors of the classifiers mentioned each are obtained, allowing the user to
characterize the response quality of the methods from a dataset’s complexity. These two rules
have been validated using fresh problems, showing that they are general and accurate. Thus,
it can be established when the classifier will perform well or poorly prior to its application.
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1 Introduction

The continuous development of data mining and Machine Learning techniques had led to a
vast amount of algorithms and techniques suitable for a wide range of problems. Even focus-
ing on a particular data mining task like classification, a great number of approaches and
applications are continuously proposed, from hybridizations of rough sets and approaches
for imbalanced data [36], tackling the curse of dimensionality [11,42], improving the com-
bination of classifiers [20] and to use class decomposition strategies to alleviate the effects of
noise [37], just to name a few. This variety of techniques and the new applications that con-
tinuously appear has made the identification of a competitive algorithm for a given problem
a complex task. Since there is no best algorithm for all the possible tasks [44] when a new
proposal is made, a comparison using an standard bunch of datasets is carried out in order to
compare and to analyze it with respect to similar existing techniques [10,15].

At the same time, new real world problems appear continuously, and in very few cases, the
users can know in advance whether the selected algorithm or technique will work appropri-
ately or not, usually thanks to their experience and/or expert knowledge. In the classification
task, efforts have been made to identify the most influential learning techniques [44] that
usually work best, but new proposals and the variety of problems diminish their influence
overtime. More recent paradigms such as the Meta Learning [8] try to fill this gap by means
of cross comparing the performance of the methods in order to obtain the most suitable one.
However, these paired approaches suffer from several problems [33] that have hindered their
wide adoption.

In contrast to the aforementioned methodologies, other modern approaches work on the
data level. Issues such as the generality of the data, the interrelationships among the variables
and other factors are key for the prediction capabilities of the classifiers. An emergent field
has arisen that uses a set of complexity measures [4] applied to quantify such particular
aspects of the problem, which are considered relevant to the classification task [17]. Studies
of data complexity metrics applied to particular classification learning methods have recently
spread [5,7,14,38,39] where they exploit such measures in order to gather information from
the data useful to classification-related tasks.

Please note that the information provided by the data complexity measures (DCMs) is
independent from any classifier applied afterward. Thus, it is possible to analyze the aspects
of the data that are complicating the learning process of a particular classifier relating the
performance value of the latter with the former associated DCM values. A seminal work
using these precepts was carried out in [25] where a single fuzzy classifier was analyzed by
a human-based process successfully obtaining the ranges of several DCMs in which such
classifier behaves well or poorly, the so-called domains of competence. Using this ad-hoc
procedure, the interrelationships of the domains of competence of nature-related classifiers
were analyzed in [26], pointing out that similar classifiers suffer and benefit from the same
characteristics of the data.

In this work, we propose an automatic extraction method for obtaining the domains of com-
petence of any classifier by means of DCMs. This proposal is able to overcome the previously
enumerated shortcomings as it does not depend on the cross comparisons between methods
and it avoids the human bias when extracting the intervals. These domains of competence
identify the datasets for which the classifier obtains a prominent good or bad performance
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using only the information provided by the DCMs. We consider 12 DCMs for each dataset
as proposed by Ho and Basu [17] where each one takes into account different geometrical
properties of the data as the overlaps in feature values from different classes, separability of
classes, measures of geometry, topology and density of manifolds. They enable the automatic
extraction method to be capable of analyzing different data characteristics and relating them
to the performance of the classifiers. As a final consequence, the user is able to predict the
classifier’s behavior prior to its application only using the characteristics of the data and to
have in mind suitable parameter configurations or hints for improving it.

In order to analyze and test the automatic extraction method proposed, we consider three
classifiers of different nature which have been comprehensively used in the literature. They
are the C4.5 decision tree [35], a support vector machine (SVM) [34,43] and the K-nearest
neighbor classifier [28]. An initial set of 340 binary classification datasets created from real
world problems acts as a representative sample provided they supply enough samples of each
DCM in order to extract the domains of competence of the three classifiers. An additional
bunch of 1,383 datasets is used to validate the domains of competence obtained by the
automatic extraction method.

Obtaining the classifiers’ domains of competence by means of the automatic extraction
method involves the following steps:

1. It obtains intervals that describe when the classifiers perform well or poorly according to
the data complexity values using the initial 340 datasets.

2. One rule for each interval is formulated where some information and conclusions about
the behavior of these methods can be stated.

3. The individual rules’ antecedents are combined using a disjunctive normal form in order
to improve their support and interpretability. Finally, two mutually exclusionary rules
which discriminate the classifier’s good or bad behavior each are obtained.

The intervals which describe the performance of the classifiers are based on the following
average values:

• Accuracy ratio, considering the average interval test accuracy, and its difference to the
average global test accuracy (across all the initial 340 datasets) with respect to a specified
threshold.
• Detection of the overfitting, by means of the difference between the training accuracy and

test accuracy ratio.

The final two rules obtained per classifier codify its domains of competence: one rule for
those datasets with the characteristics suitable for it and another rule for those that yield
poor accuracy. A careful analysis shows that while most of the DCMs are useful to the
automatic extraction method to build them, the precise DCM application varies depending
on the classifier. The generalization abilities of the domains of competence are validated
using a fresh set of 1,383 datasets. The DCM values for each dataset are computed, and then,
the domains of competence decide whether the dataset will yield a good accuracy or not for
the classifier. This prediction has been compared to the real accuracy output, showing that the
domains of competence automatically extracted provide an accurate and general description
of the good and bad datasets for a given classifier. The software that implements the automatic
extraction method, along with the algorithmic notation, datasets and results can be obtained
from the website associated with this paper: http://sci2s.ugr.es/DC-automatic-method.

The rest of this paper is organized as follows. In Sect. 2, the considered complexity mea-
sures are introduced as well as the most recent literature on the topic. Section 3 defines the
domains of competence used, their related approach in the literature and their motivation.
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Section 4 describes the automatic extraction method proposed in this work. In Sect. 5, we
summarize the experimental framework, in which we show the datasets used, the classifiers’
details and their parameters. In Sect. 6, we include the experimental results obtained with
the automatic extraction method and the domains of competence extracted, along with their
analysis. Finally, in Sect. 7, the concluding remarks are provided.

2 Data complexity measures

The DCMs are a set of numeric indicators of particular data aspects that have been identi-
fied as difficult for the classifiers. This section is devoted to provide an overview of these
measures. In the subsequent sections, we first present a short review of recent studies of data
complexity metrics (Sect. 2.1), and then, we describe the measures of overlapping (Sect. 2.2),
measures of separability of classes (Sect. 2.3) and measures of geometry (Sect. 2.4) used in our
study.

2.1 Recent studies on data complexity

There are some methods used in classification, either learner or preprocessing techniques,
which work well with particular datasets, while other techniques work better with different
ones. This is due to the fact that each classification dataset has particular characteristics that
define it. The generality of the data, the interrelationships among the variables and other
factors are key for the results of such methods. These issues have been quantified by an
emergent field by defining a set of measures related to particular sources of the problem on
which the behavior of classification methods usually depends to [4].

A seminal work on data complexity is [17] in which some complexity measures for binary
classification problems are proposed gathering metrics of three types: overlaps in feature
values from different classes; separability of classes; and measures of geometry, topology
and density of manifolds. Extensions can be also found in the literature, such as in the work
of Singh [40], which offers a review of data complexity measures and proposes two new
ones.

From these works, different authors attempt to address different data mining problems
using these measures. For example, Baumgartner and Somorjai [5] define specialized mea-
sures for regularized linear classifiers. Other authors try to explain the behavior of learning
algorithms using these measures, optimizing the decision tree creation in the binarization of
datasets [23] or to analyze Fuzzy-UCS and the model obtained when applied to data streams
[32]. The DCMs have reached other related fields, such as gene expression analysis in Bioin-
formatics [22,30]. Recently, the information provided by the DCMs has been used to stress
the importance of a correct selection of the datasets that act as a test bed when comparing
classifiers [27].

The research efforts in data complexity are currently focused on two fronts. The first
aims to establish suitable problems for a given classification algorithm using only the data
characteristics and thus determining their domains of competence. In this line of research
recent publications, e.g., the works of Luengo and Herrera [25] and Bernado-Mansilla and
Ho [7] provide a first insight into the determination of an individual classifier’s domains of
competence. In line with this, Sanchez et al. [29] study the effect of the data complexity
on the nearest neighbor classifier. The relationships between the domains of competence
of similar classifiers were analyzed by Luengo and Herrera [26], indicating that related
classifiers benefit from common sources of complexity of the data.
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Table 1 Data complexity
measures

Type Id. Description

Measures of overlaps in
feature values from
different classes

F1 Maximum Fisher’s
discriminant ratio

F2 Volume of overlap region

F3 Maximum (individual)
feature efficiency

Measures of separability of
classes

L1 Minimized sum of error
distance by linear
programming

L2 Error rate of linear classifier
by linear programming

N1 Fraction of points on class
boundary

N2 Ratio of average intra/inter
class NN distance

N3 Error rate of 1NN classifier

Measures of geometry,
topology and density of
manifolds

L3 Nonlinearity of linear
classifier by linear
programming

N4 Nonlinearity of 1NN classifier

T1 Fraction of points with
associated adherence
subsets retained

T2 Average number of points per
dimension

DCMs are increasingly used in order to characterize when a preprocessing stage will be
beneficial to a subsequent classification algorithm in many challenging domains. García et
al. [14] firstly analyzed the behavior of the evolutionary prototype selection strategy using
one complexity measure based on overlapping. Further developments resulted in a character-
ization of when preprocessing is beneficial in imbalanced [24] or noisy data [38]. The DCMs
can also be used as a part of the preparation step itself. As an example, we must remark
the work of Dong [12] where a feature selection algorithm based on complexity measures is
proposed.

This paper follows the first research line. It aims to characterize when a problem is suitable
for a classifier solely regarding to the data properties using the information provided by the
DCMs. Those regions of the DCMs that indicate an easy problem will be associated to a good
performance of the classifier and viceversa. It can be expected that such metrics will enable
us to know in advance whether a given classifier will be appropriate for the given dataset.

In this study, 12 metrics proposed by Ho and Basu [17] will be considered. In the following
subsections, these measures, classified by their family, are briefly presented. For a deeper
description of their characteristics, the reader may consult [17]. They are summarized in
Table 1. In the following subsections, we briefly describe these 12 measures, classified by
their respective types.

2.2 Measures of overlaps in feature values from different classes

These measures are focused on the effectiveness of a single feature dimension in separating
the classes, or the composite effects of a number of dimensions. They examine the range
and spread of values in the dataset within each class and check for overlaps among different
classes.
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F1: maximum Fisher’s discriminant ratio. Fisher’s discriminant ratio for one feature
dimension is defined as: f = (μ1−μ2)2

σ 2
1+σ 2

2
where μ1, μ2, σ 2

1 , σ 2
2 are the means and variances

of the 2 classes, respectively, in that feature dimension. We compute f for each feature and
take the maximum as measure F1. For a multidimensional problem, not all features have to
contribute to class discrimination. The problem is easy as long as there is only one discrim-
inating feature. Therefore, we can just take the maximum f over all feature dimensions in
discussing class separability.

F2: volume of overlap region. Let the maximum and minimum values of each feature fi

in class C j be max( fi , C j ) and min( fi , C j ), then the overlap measure F2 is defined as

F2 =
∏

i

M I N M AXi − M AX M I Ni

M AX M AXi − M I N M I N i

where i = 1, . . . , d for a d-dimensional problem and

M I N M AXi = M I N (max( fi , C1), max( fi , C2))

M AX M I N i = M AX(min( fi , C1), min( fi , C2))

M AX M AXi = M AX(max( fi , C1), max( fi , C2))

M I N M I N i = M I N (min( fi , C1), min( fi , C2))

F2 measures the amount of overlap of the bounding boxes of 2 classes. It is the product of
a per-feature overlap ratio. The volume is zero as long as there is at least one dimension in
which the value ranges of the 2 classes are disjointed.

F3: maximum (individual) feature efficiency. In a procedure that progressively removes
unambiguous points falling outside the overlapping region in each chosen dimension [16],
the efficiency of each feature is defined as the fraction of all remaining points separable by
that feature. To represent the contribution of the most useful feature in this sense, we use the
maximum feature efficiency as a measure. This measure considers only separating hyper-
planes perpendicular to the feature axes. Therefore, even for a linearly separable problem,
F3 may be less than 1 if the optimal separating hyperplane is oblique.

2.3 Measures of separability of classes

These measures provide indirect characterizations of class separability. They assume that
a class is made up of single or multiple manifolds that form the support of the probability
distribution of the given class. The shape, position and interconnectedness of these manifolds
give hints on how well 2 classes are separated, but they do not describe separability by design.
Some examples are shown as follows:

L1: minimized sum of error distance by linear programming. Linear classifiers can be
obtained by a linear programming formulation proposed by Smith [41]. The method mini-
mizes the sum of distances of error points to the separating hyperplane (subtracting a constant
margin):

minimize att

subject to Ztw + t ≥ b

t ≥ 0

where a and b are arbitrary constant vectors (both chosen to be 1), w is the weight vector to
be determined, t is an error vector and Z is a matrix where each column z is defined on an
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input vector x (augmented by adding one dimension with a constant value 1) and its class C
(with value C1 or C2) as follows:

{
z = +x if C = C1,

z = −x if C = C2.

The value of the objective function in this formulation is used as a measure. The measure
has a zero value for a linearly separable problem. We should notice that this measure can be
heavily affected by the presence of outliers in the dataset.

L2: error rate of linear classifier by Linear Programming (LP). This measure is the error
rate of the linear classifier defined for L1, measured with the training set. With a small training
set, this can be a severe underestimate of the true error rate.

N1: fraction of points on class boundary. This method constructs a class-blind minimum
spanning tree over the entire dataset and counts the number of points incident to an edge
going across the two classes. The fraction of such points over all points in the dataset is used
as a measure.

N2: ratio of average intra/interclass Nearest Neighbor (NN) distance. For each input
instance x p , we calculate the distance to its nearest neighbor within the class (intraDist(x p))
and the distance to nearest neighbor of any other class (interDist(x p)). Then, the result is
the ratio of the sum of the intraclass distances to the sum of the interclass distances for each
input example, i.e.,

N2 =
∑m

i=0 intraDist(xi )∑m
i=0 inter Dist(xi )

,

where m is the number of examples in the dataset. This metric compares the within-class
spread with the distances to the nearest neighbors of other classes. Low values of this metric
suggest that the examples of the same class lie closely in the feature space. Large values
indicate that the examples of the same class are disperse.

N3: error rate of 1-NN classifier. This is simply the error rate of a nearest neighbor
classifier measured with the training set. The error rate is estimated by the leave-one-out
method. The measure denotes how close the examples of different classes are. Low values
of this metric indicate that there is a large gap in the class boundary.

2.4 Measures of geometry, topology and density of manifolds

These measures evaluate to what extent 2 classes are separable by examining the existence
and shape of the class boundary. The contributions of individual feature dimensions are
combined and summarized in a single score, usually a distance metric, rather than evaluated
separately. Three measures from this family are described as follows:

L3: nonlinearity of linear classifier by LP. Hoekstra and Duin [18] proposed a measure for
the nonlinearity of a classifier with respect to a given dataset. Given a training set, the method
first creates a test set by linear interpolation (with random coefficients) between randomly
drawn pairs of points from the same class. Then, the error rate of the classifier (trained by the
given training set) on this test set is measured. Here, we use a nonlinearity measure for the
linear classifier defined for L1. This measure is sensitive to the smoothness of the classifier’s
decision boundary as well as to the overlap of the convex hulls of the classes.

N4: nonlinearity of 1-NN classifier. Following the same procedure presented for the L3
measure, in the case of N4, the error is calculated for a nearest neighbor classifier. This
measure is for the alignment of the nearest neighbor boundary with the shape of the gap or
overlap between the convex hulls of the classes.

123



154 J. Luengo, F. Herrera

T1: fraction of points with associated adherence subsets retained. This measure originated
from a work on describing shapes of class manifolds using the notion of adherence subsets
in pretopology [21]. Simply speaking, it counts the number of balls needed to cover each
class, where each ball is centered at a training point and grown to the maximum size before
it touches another class. Redundant balls lying completely in the interior of other balls are
removed. We normalize the count by the total number of points. In a problem where each
point is closer to points of the other class than points of its own class, each point is covered
by a distinctive ball of a small size, resulting in a high value.

T2: average number of points per dimension. This is a simple ratio of the number of points
in the dataset over the number of feature dimensions, i.e.,

T 2 = m

n
,

where m is the number of examples in the dataset, and n is the number of attributes of the
dataset.

3 Domains of competence of classifiers

This section is devoted to the introduction and description of the domains of competence of
classifiers. The motivation behind the proposal is presented in Sect. 3.1, and the concept of
the domains of competence of the classifiers used in this paper is given in Sect. 3.2.

3.1 Approaches on the classifier performance characterization

To determine whether a learning method will perform well or poorly before building and
validating the model obtained, considering accuracy as the performance measure is not a
trivial task. One of the best-known approaches to predict the classifier performance, which
formalized this task [6,8,33], is the Meta Learning problem. Meta Learning intends to select
the best classifier for a given problem among several ones. A Meta Learning example most
often involves a pair (Machine Learning problem instance and Machine Learning algorithm),
labeled with the performance of the algorithm on the Machine Learning problem instance.

The two main problems of Meta Learning are the problem of the selection and the repre-
sentation of Meta Learning examples.

• How to represent a Machine Learning problem instance was tackled using diverse descrip-
tors, e.g., number of examples, number of attributes, percentage of missing values and
landmarkers. [33]. The difficulty is due to the fact that the descriptors must take into
account the example distribution, which is not easily achieved in most cases.
• A second difficulty concerns the selection of the Machine Learning problem instances.

Kalousis [19] indicates that the representativity of the problems and the perturbation
induces strong biases in the Meta Learning classifier.

For these reasons, Meta Learning has achieved limited success.
We can also refer to the less known phase transition approach as a paradigm that aims to the

same objective. Phase transition was initially developed to better understand the performances
of Constraint Satisfaction algorithms indicating where the really hard problems are [9]. This
paradigm defines a regular complexity landscape: the actual complexity is negligible in two
wide regions, the YES and NO region, where the probability of satisfiability is respectively
close to 1 and close to 0. These regions are separated by the so-called phase transition where
the hardest problems on average concentrate.
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Fig. 1 Accuracy in training/test for C4.5 sorted by training accuracy
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Fig. 2 Accuracy in training/test for SVM sorted by training accuracy

Using the phase transition, Baskiotis and Sebag [3] adapted the k-term DNF representation
to classification problems, evaluating the C4.5 learning performance with respect to the
underlying target concept. They defined C4.5 competence maps by means of generating
boolean datasets of different characteristics (number of attributes, number of terms, etc.)
based on a uniform distribution. C4.5 is then trained on these datasets, and C4.5’s error
constitutes the complexity landscape (i.e., the competence map) using different datasets’
configurations. However, these competence maps are only defined for binary attributes, and
they are based on the assumption of a uniformly distributed sample space, which is not
usually true. Furthermore, the descriptive expressions obtained are not unique, hindering
their interpretability.

One of the major problems with these approaches is that a good accuracy value in training
does not necessarily mean that a good value in test will follow, neither similar training
accuracy values will yield similar test accuracy values as well. Figures 1, 2 and 3 depict the
accuracy results in training and test for C4.5, SVM and K-NN over all the initial 340 datasets
used in this work (see Sect. 5.1), plotted in ascending training accuracy value. It is necessary
to point out how overfitting is continuously present, specially for C4.5 and SVM. Therefore,
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Fig. 3 Accuracy in training/test for K-NN sorted by training accuracy
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Fig. 4 Accuracy in training/test for SVM sorted by N1

the necessity of other kinds of approaches which do not use accuracy for characterizing the
behavior of classifiers appears.

The DCMs presented in the previous section are a recent and promising option that can
be used to establish the difficulty of a classification problem independently of the classifier.
Each data complexity captures a singular aspect of the difficulty of the data, independently
of the classifier applied afterward. Thus, the difficulty of the problem can be stated before
the application of the classification learning. If the DCM identifies precisely, the source of
difficulty for a given classifier and a given problem, any other dataset with a close value for the
same DCM should produce a similar behavior by the classifier. For example, in Fig. 4, which
shows SVM’s accuracy sorted by the N1 DCM, datasets with close values for N1 show similar
good or bad results. It can be expected that any other dataset with low N1 values will yield
good accuracy values for SVM and poor accuracy values for high N1 values. However, this
behavior pattern does not usually apply for all the DCMs. Figure 5 shows the same SVM’s
accuracy results sorted by the F2 DCM as an example of a DCM in which no significant
regions can be found for either good or bad behavior.
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Fig. 5 Accuracy in training/test for SVM sorted by F2

Please note that any dataset may present diverse sources of difficulty for the classification
task. It is needed to analyze several DCMs and their interactions in order to obtain a more
complete picture of those easy or difficult problems for a classifier. This goal has been
tackled by means of the domains of competence based on DCMs described in the following
section.

3.2 Domains of competence using data complexity measures

The concept of domains of competence involves the characterization of the range of problems
for which a particular learning method is well suited or not based on several data properties at
once. These problems share some aspects that explain the good or bad behavior of the method
on them. There are some previous approaches in the literature, which define the domains of
competence of a learning method based on the DCMs. Such domains may discourage the
use of a classification method if training it takes a long time, due to the inner complexity
of the learning algorithm or the size of the data, and its performance is expected to be poor.
Problems denoted as difficult a priori may also require a different parameter configuration
with respect to simpler ones. The DCMs also give clues on the nature of the data as may be
the importance of individual features, the shape of the class convex hulls or even the distance
and/or separability of the examples at the class borders, making possible to focus specific
efforts to improve the method’s performance in the difficult regions.

Bernadó and Ho [7] introduced a first approach to the concept of domains of competence
for the XCS classifier. Their initial definition indicates the region of the complexity space of
problems adequate to the learning method characteristics. In order to establish such limits,
they used six of the 12 DCMs presented in Table 1 and related the error rate of XCS to high
or low values of the data complexity metrics. They also observed which kind of metrics best
discriminate between difficult and easy problems for XCS. Such a characterization could be
useful for focusing the efforts of the learning algorithm’s improvements on those difficult
areas.

This concept of domains of competence can be related to other approaches in the literature
presented in the previous section. The competence maps described by the phase transition
paradigm can be considered as a limited version of these domains of competence. They
suffer from severe limitations that have not been overcome: the real world datasets are rarely
completely binary and uniformly distributed. The use of the domains of competence does not
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suffer from these problems, as it is not dependent on a specific Machine Learning method
either in the data distribution or the kind of dataset attributes.

In [25], the initial notion of domains of competence is extended and completed eliminating
the constraints on the low or high values for the FH-GBML Fuzzy Rule-Based Classification
System, using all of the 12 DCMs. Intervals of the measures with precise bounds in which the
FH-GBML method performs well or poorly (instead of relating its performance to “high” or
“low” values) are extracted ad-hoc. Using enough datasets sorted by a particular DCM, we
can visually observe regions in which the method is performing noticeably well or poorly.
These regions or intervals from several DCMs were coded as rules which constitute the
domains of competence of the learning method.

It is desirable that the task of extracting the intervals in order to obtain the domains of
competence is performed automatically. Orriols and Casillas [32] proposed the use of C4.5
to accomplish this task involving several classifiers at once. They used the data complexity
values as the input features for each dataset and the label of the best algorithm for each
problem as the output attribute resulting in a synthetic dataset. The rules obtained by C4.5
are used to code the intervals where each classifier outperforms the other ones. However, the
domains of competence of two different classifiers cannot be compared in order to determine
the best classifiers as showed in [32]: a better performance of one classifier does not mean
that the other is performing badly as the absolute accuracy values were not being taken into
account. Only shared strengths and weaknesses between classifiers can be pointed out as
shown in [26].

In this paper, we extend and refine the methodology made in [25], proposing an automatic
method in order to extract the domains of competence of an individual classifier, without the
need to compare it to another one. An independent definition of the domains of competence
will not vary with the consideration of new algorithms or problems. As stated before, the
comparison between classifiers is directly related to the Meta Learning approach where many
problems arise when trying to determine the best algorithm and no satisfactory solution has
been proposed. Our proposal does not suffer from these issues, such as [32], while it has been
proven that the obtained domains of competence are generalizable and extensible to other
classifiers [26].

The use of the domains of competence instead of running the classifier over the problem
has many advantages. For example, big datasets may cause the classifier to take too much
time to train, or the adequate parameter configuration may not be obvious. Each DCM has a
meaning, and hence, the causes for a classifier’s easy or difficult problems can be identified.
These issues can be addressed by means of the DCMs as they work directly with the data, but
this information cannot be extracted from the Meta Learning or phase transition approaches.

4 Automatic extraction method

In the study performed in [25], an ad-hoc method used for extracting intervals for the FH-
GBML was proposed. The intervals were extracted over the sorted datasets as described in
Sect. 3.1. This ad-hoc method was based on the selection of intervals of data complexity
metrics values, with some significance for the user according to a visual criteria for the good
results.

Two main problems were found when dealing with the ad-hoc process of extracting inter-
vals in [25]:

1. The cut points which define the intervals were arbitrarily selected according to the
graphics.
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2. It is possible to omit similar intervals to the extracted ones. The user has no means to
visually take into account all the eligible intervals.

In this work, we aim to solve or diminish the harmful effect of these problems. By proposing
the automatic extraction method, we do not need to decide which DCMs are useful or not,
as it will thoroughly search all the feasible intervals. These intervals are extracted based on
a computer-understandable definitions equivalent to those performed by a human as in [25].
Please be aware that these definitions still need a certain degree of human interpretability of
what is good and bad performance. However, under these premises, the automatic extraction
method is able to extract the largest possible intervals that met the definitions, while it can
drop out those small intervals that may constitute outliers.

In Sect. 4.1, the initial considerations for the definition of the good or bad behavior elements
and intervals are provided. Sections 4.2 and 4.3 give the good and bad behavior elements
and intervals definitions, respectively. Finally, the automatic extraction method is described
in Sect. 4.4.

4.1 Initial considerations

The automatic extraction method analyzes a list of datasets where each complete dataset has
an associated performance measure of the classifier considered (typically the training and
test accuracy rates) and the values of the 12 DCMs.

Let U = {u1, u2, . . . , un} be a list of n different datasets. Each dataset ui has associated
a tuple Tui = (utra

i , utst
i , uF1

i , uF2
i , . . . , uT 2

i ) where utra
i is the training accuracy value asso-

ciated with the dataset ui for a specific classifier, utst
i is the test accuracy value associated

with the dataset ui for the same classifier and the set C Mui = {uF1
i , uF2

i , . . . , uT 2
i } contains

the values for the 12 DCMs.
Given a list of datasets U = {u1, u2, . . . , un}, we denote the average training accuracy

over U as Ū tra = 1
n

∑n
i=1 utra

i and the average test accuracy as Ū tst = 1
n

∑n
i=1 utst

i .
In order to define the domains of competence of a classifier, intervals of values of the

DCMs need to be stated. The intervals are defined over the list U of datasets sorting the list
U by one DCM C M j of the 12 DCMs obtaining a sorted list of datasets UC M j with respect

to the data complexity C M j such that ∀uC M j
i , u

C M j
j ∈ UC M j ; uC M j

i ≤ u
C M j
j , if i < j .

Given a list of sorted datasets UC M j = {u1, u2, . . . , un} by the DCM C M j ∈ T , we
consider an interval V = {ui , ui+1, . . . , ul} ⊆ UC M j where the lower and upper bound
values of V immediately follows:

• Mlow(V ) = mink{uC M j
k ∈ V } = ui .

• Mup(V ) = maxk{uC M j
k ∈ V } = ul .

In our proposal, we distinguish between good and bad behavior elements (datasets) and good
and bad behavior intervals. The latter ones are obtained using the former ones, and they are
described in the next subsections.

4.2 Good and bad behavior elements

The distinction between good and bad behavior elements is based upon the absence or pres-
ence of overfitting, respectively, as well as the test accuracy value obtained. These are the
two most common elements to determine when a classification algorithm performs well or
poorly. The automatic method works with specific values depending on the datasets, which
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act as a sample of the classifier’s behavior, so we need to parameterize these two subjective
indicators.

The previous aspect is evaluated comparing the element’s difference between training and
test accuracy with respect to the global average. This global average difference is obtained
as

Ū di f f = 1

n

n∑

j=1

max
{

utra
j − utst

j , 0
}

. (1)

An element with a difference between training and test accuracy above this average is con-
sidered to be overfitted, while the opposite case is not.

On the other hand, any good behavior element ui must present a minimum test accuracy
value utest

i , represented by the minGoodElementTest. By contrast, a bad behavior element u j

shows a test accuracy value utest
i under the same threshold minGoodElementTest.

With the aforementioned parameters, the definitions of the good and bad behavior elements
are as follows.

Definition 1 A good behavior element ui is such that

1. utest
i ≥ minGood ElementT est ; and

2. utra
i − utst

i ≤ Ū di f f .

Definition 2 A bad behavior element ui is such that

1. utest
i < minGood ElementT est ; and

2. utra
i − utst

i > Ū di f f .

Due to the first item of both definitions, no element can be considered as a good behavior
and bad behavior element simultaneously.

4.3 Good and bad behavior intervals

The good or bad behavior intervals V show the good or bad performance of the classifier over
a range of elements on average. Thus, for intervals, the definition of good or bad behavior
is different with respect to individual elements, although they share the same underlying
concepts: overfitting and test accuracy.

We consider the average difference across every element covered as a criteria to discrim-
inate between good and bad behavior. The average interval V difference is defined as in
Eq. (1) limited to the datasets included in V :

V̄ di f f = 1

|V |
n∑

u j∈V

max
{

utra
j − utst

j , 0
}

.

A good interval must have a lower average difference than the global average Ū di f f defined
in Eq. (1). A bad interval must verify the opposite case.

We also establish a threshold between the average test accuracy of the interval V̄ tst and
the global average Ū tst . An interval of good behavior must have an average test accuracy
above this threshold plus Ū tst , while a bad behavior interval must verify the opposite case:
Ū tst minus the threshold. This condition reflects the behavior difference of the classifier with
respect to the average obtained in the dataset sample.

In the case of good behavior intervals, we also establish that no element can have a test
accuracy below minGood ElementT est percent. The reason to do so is to avoid very bad
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elements being covered by the interval due to the latter still having a good test average. This
aspect is not crucial when defining bad intervals.

The definition of the good and bad behavior intervals using these parameters is as follows.

Definition 3 An interval of good behavior V = {ui , . . . , u j } is such that

1. V̄ di f f ≤ Ū di f f ; and
2. V̄ tst ≥ Ū tst + threshold; and
3. ∀u j ∈ V ; utst

j ≥ minGood ElementT est

Definition 4 An interval of bad behavior V = {ui , . . . , u j } is such that

1. V̄ di f f > Ū di f f ; and
2. Ū tst < Ū tst − threshold .

4.4 Automatic extraction method description

The automatic extraction method obtains a series of good or bad behavior intervals (as
indicated in Definitions 3 and 4 respectively) from a list of datasets U . Each dataset ui ∈ U
has the associated tuple T containing the training and test accuracy values for a particular
classifier and its 12 data complexity values.

In order to extract the good and bad behavior intervals, the automatic extraction method
follows a bottom-up process. It firstly arranges the datasets in U by sorting them with one
of the DCMs C M j , j = 1, . . . , 12, obtaining a new sorted list UC M j . Then, the sorted
list UC M j is explored from the lowest to highest values of C M j . When a good or bad
behavior element ui ∈ UC M j is found (Definitions 1 and 2, respectively), the exploration
stops. Please note that the traversing order has no effect as we exhaustively look for single
elements.

The found element ui is considered as an initial interval V = {ui }, which is extended
by adding the adjacent elements to ui . This growing process continues while the interval
V verifies the definitions of good or bad behavior intervals accordingly. A final interval
V = {ui−r , . . . , ui , . . . , ui+s}; r, s ∈ N is obtained when the corresponding definition is not
met.

When all the possible intervals have been extracted, a higher level phase is applied. It
consist of a generalization step where overlapped or slightly separated intervals of the same
type are merged and provided that the corresponding definition of a good or bad interval
is maintained. A filtering process is also applied in order to avoid nonsignificant intervals
where intervals with a support under 15 % of the total datasets are discarded.

We present the main outline of the automatic extraction method described in Algorithm 1.1

For the sake of brevity, the full algorithmic notation of the functions used in Algorithm 1
is provided in the associated web page. Their purpose is briefly described as follows:

• next I mportantGood Point (ui , U ): Looks for the index k of the next good behavior
point uk in the subset V = {ui , . . . , un} ⊆ U . If no good behavior point can be found, it
returns −1.
• next I mportant Bad Point (ui , U ): Looks for the index k of the next bad behavior point

uk in the subset V = {ui , . . . , un} ⊆ U . If no bad behavior point can be found, it returns
−1.

1 The software that implements the automatic extraction method can be downloaded from the associated
webpage.

123



162 J. Luengo, F. Herrera

Algorithm 1 Automatic Extraction Method
Input: A list of datasets U = {u1, u2, . . . , un}. Each dataset ui has associated a tuple T containing the

training and test accuracy values for a particular learning method and its 12 data complexity values.
Output: A set of intervals G in which the learning method shows good behavior, and a set of intervals B

where the learning method shows bad behavior
Steps:
G ← {}
B ← {}
for each C M j ∈ T do

//Sort the list U by each data complexity measure C M j
UC M j ← sort (U, C M j )

//Search for good behavior intervals
i ← 1
while i < n do

pos ← nextImportantGoodPoint(ui , UC M j )

if pos �= −1 then
V ← extendGoodInterval(pos, UC M j )

G ← G ∪ {V }
ui ← Mup(V )

end if
end while
//Search for bad behavior intervals
i ← 1
while i < n do

pos ← nextImportantBadPoint(ui , UC M j )

if pos �= −1 then
V ← extendBadInterval(pos, UC M j )

B ← B ∪ {V }
ui ← Mup(V )

end if
end while

end for
//Merge and filter the intervals if necessary
G ← mergeOverlapped I ntervals(G)

G ← dropSmall I ntervals(G)

B ← mergeOverlapped I ntervals(B)

G ← dropSmall I ntervals(B)

return {G,B}

• extendGood I nterval(pos, U ): From the reference point u pos , this method creates a
new interval of good behavior V = {u pos−r , . . . , u pos, . . . , u pos+s} ⊆ U , maintaining
the element’s order in U .
• extend Bad I nterval(pos, U ): From the reference point u pos , this method creates a new

interval of bad behavior V = {u pos−r , . . . , u pos, . . . , u pos+s} ⊆ U , maintaining the
element’s order in U .
• mergeOverlapped I ntervals(A): In this function, an interval Vk is dropped from A if
∃Vm ∈ A;Mup(Vm) ≥ Mup(Vk) and Mlow(Vm) ≤ Mlow(Vk). Moreover, it tries to merge
overlapped intervals Vk, Vm; Vk ∩ Vm �= ∅; or intervals separated by a maximum gap
of 5 elements (datasets), provided that the new merged intervals satisfy Definition 3 and
4 of good or bad behavior, respectively. Please note that, this step may introduce some
elements with accuracy values below minGood ElementT est into the good behavior
intervals.
• dropSmall I ntervals(A): This function discards the intervals Vk ∈ A, which contains a

number of datasets less than 0.15 · n.
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Table 2 Base datasets used to
extract the domains of
competence (extraction) and to
validate them (validation)

Extraction iris, wine, led7digit, ecoli, glass, tae, contraceptive,
yeastB, segment, abalone, penbased, kr-vs-k

Validation flare, zoo, balance, cars, mammographic,
hayes-roth, australian, bupa, monks, new-thyroid,
vowel, letter, marketing, texture

5 Experimental framework

In this section, we first describe the datasets considered for the domains of competence
extraction and evaluation in Sect. 5.1. Next, we show the parameter values for the classification
methods used in Sect. 5.2.

More detailed descriptions of the classifiers can be obtained from the associated webpage.
All the datasets’ generation details and their download packages are also available.

5.1 Datasets’ choice for the experimental study

In this paper, a set of binary classification problems is used due to the fact that the DCMs
are well defined only for two class problems. These problems were generated from pairwise
combinations of the classes of 26 problems from the KEEL Dataset repository2 [2] where
datasets from well-known sources such as the UCI repository are stored and partitioned in
KEEL format. We take each dataset and extract the examples belonging to each class, and a
new dataset with the combination of the examples from two different classes is constructed.
This will result in a new dataset with only 2 classes and the examples, which have two such
classes as output. In order to obtain additional datasets, we also extend this methodology
grouping the classes two by two, thus creating new class labels containing the former pair of
classes.

It is important to note that not all the datasets generated by this procedure may be valid.
In order to avoid the datasets that may yield erroneous conclusions, we filter those created
datasets that resulted to be too easy for the classification task or present an imbalanced ratio
between the classes. If the dataset proves to be linearly separable, then we may classify it
with a linear classifier with no error and such a dataset would not be a representative problem.
The complexity measure L1 indicates that if a problem is linearly separable when its value is
zero, so every dataset with an L1 value of zero is discarded. On the other hand, we limit the
imbalance ratio [31] to a value of 1.5, as it has been analyzed in the literature as a reasonable
threshold to denote balanced datasets [13] that enable the use of accuracy as a performance
measure (as used by the DCMs as well). This filtering resulted in 340 binary classification
problems, which are used as our training bed for the automatic extraction method.

In order to validate the domains of competence obtained using the aforementioned 340
datasets, we have applied the same methodology to a different set of datasets from the KEEL
dataset repository. Applying the same filtering criteria, we have obtained another 1,383
datasets used for validating the rules obtained in our analysis, which provide enough values
for each DCM to be representative. Table 2 enumerates the base datasets used to obtain the
extraction and validation datasets.

The learning methods’ accuracy is estimated using a tenfold cross validation scheme
where the datasets are partitioned in 10 equal-sized folds. Each time one fold acts as the test

2 http://keel.es/datasets.php.
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Table 3 Parameters used by the
classifiers

Those parameters adjusted by
grid search appear underlined

Classifier Reference Parameters

C4.5 [35] Confidence level = 0.25

Pruning for the final tree = yes

SVM [34] C = [1, 1,000]

Tolerance Parameter = 0.001

Epsilon = 10−12

Kernel type = {Polynomial, RBF, Puk}

ω = [0.0, 1.0]

σ = [0.0, 1.0]

K-NN [28] K= {1,3,5,7,9,11,13}

Distance measure = HVDM

partition, while the rest are used to train and generate the model by the classifier. We take
the average accuracy of training and test over the 10 partitions as a representative measure of
the classifiers’ performance. The DCMs were intended to reflect the difficulty with respect
to accuracy, and the use of balanced dataset allows it usage without bias.

5.2 Parameters of the methods

In this section, we present the parameters used for the three classifiers considered using
the values recommended by the authors. For those parameters that need to be empirically
adjusted (in SVM and K-NN), a systematical grid search is applied over each one of the
340 initial datasets within the bounds indicated in the table in order to obtain the best test
accuracy possible. We have used the implementations of these learning classifiers available
in KEEL software [1]. The parameters are shown in Table 3, indicating the ranges of search
if applicable.

6 Extracting the domains of competence using the automatic method

In this section, we present the analysis of the application of the automatic extraction method
step by step in order to obtain the domains of competence of the three classifiers considered.
First, we extract the intervals by using the automatic extraction method described in Sect. 4 for
the three classifiers using the initial 340 datasets. These intervals and the rules obtained from
them that provide a first approximation to the domains of competence of the three classifiers
are shown in Sect. 6.1. The final and simple domains of competence description are tackled
in Sect. 6.2 where the analysis of the disjunctive rules and their conjunctive combination
is presented. Finally, these latter rules which represent the domains of competence of the
classifiers are tested with the 1,383 validation datasets in Sect. 6.3.

6.1 Extracting the intervals and initial rules

In order to apply the automatic extraction method proposed in this paper, the threshold
parameter needs to be provided. As mentioned before, this parameter establishes the degree
of difference between the candidate intervals with respect to the average behavior of the
method. In Table 4, we summarize the global training and test accuracy obtained by the
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Table 4 Global average training
and test accuracy/SD for C4.5,
SVM and K-NN over the 340
datasets

% Accuracy training & SD % Accuracy test & SD

C4.5 93.79 % ± 9.89 89.32 % ± 12.61

SVM 93.21 % ± 11.23 90.30 % ± 12.47

K-NN 89.75 % ± 13.36 90.07 % ± 13.10

classifiers for the initial 340 datasets that will be used by the automatic extraction method as
reference. All the detailed results can be downloaded from the associated webpage.

In Table 4, we also include the standard deviation of the accuracy of each classifier. It
provides a hint on how consistent is the classifier over the 340 datasets. As can be appreciated,
C4.5 and SVM present a lower standard deviation, while K-NN is less regular, but all three
classifiers are comparable by the average test accuracy.

Before we can run the automatic extraction method, we need to set its parameters as
described in Sect. 4. Please note that, the parameters could be adjusted to a particular scenario.
That is, the concept of good or bad behavior varies according to the context, and it can be
tuned depending on the user or the requirements needed. The selected values of the two
parameters are minGood ElementT est = 90 and threshold = 8.

The threshold has been set high enough to produce a good differentiation between the
intervals of good and bad behavior without exceeding the 100 % in test accuracy. A 90 % test
accuracy is a reasonable borderline established by minGoodElementTest as can be seen from
Table 4, forcing a good dataset to be classified at least as the average.

We run the automatic extraction method in order to obtain all the DCMs intervals in which
each classifier has obtained significantly good or bad behavior with respect to the global
performance. In Table 5, we summarize the intervals obtained by the automatic extraction
method. We must point out that some of the intervals are shared among the classifiers, if
not completely, at least in part of their supported datasets. It is also interesting to note how
the automatic extraction method is capable of extracting distinct intervals for the different
classifiers due to the differences in performance and the common good and bad behavior
definitions they share. The automatic extraction method has been capable of extracting a
similar number of intervals for the three classifiers.

In overall terms, the intervals of good/bad behavior of the three classifiers appear in the
same lower or higher valued regions of a DCM, but the support and bounds do not always
coincide. The software which implements the automatic extraction method is also able to
automatically plot the found intervals. Figures 6 and 7 graphically depict the intervals drawn
by the software for SVM and C4.5, respectively, considering the F3 DCM. They show an
example of such a difference in behavior reflected by the distinct intervals yielded by each
classifier. While SVM is able to attain similar accuracy in close regions of higher values
of F3 DCM, C4.5 shows a lesser identifiable behavior pattern, thus hindering the support
of the obtained intervals. Some datasets that lie in the bad behavior interval show a good
performance. This may happen because some datasets may appear to be difficult from one
DCM perspective, but they may be easy to classify considering other aspects of the data
(other DCMs).

From the intervals, a set of rules is created automatically by the software that will act
as the germinal description of the domains of competence of the classifier for each DCM.
Table 6 depicts the rules for C4.5, Table 7 shows the rules for SVM and Table 8 contains the
rules for K-NN with the support of the rules over the 340 datasets, the average training and
test accuracy of the covered datasets and the difference with the global accuracy shown in
Table 4,
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Fig. 6 SVM accuracy results sorted by F3 with the extracted intervals
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Fig. 7 C4.5 accuracy results sorted by F3 with the extracted intervals

The columns in Tables 6, 7 and 8 are organized as follows:

• The first column corresponds to the identifier of the rule.
• The “Range” column presents the domain of the rule.
• The third column “Support” presents the percentage of datasets, which verify the

antecedent part of the rule.
• The column “% Training, SD” shows the average accuracy in training of all the examples,

which are covered by the rule. The standard deviation of the average training accuracy is
also computed.
• The column “Training Difference” contains the difference between the training accuracy

of the rule and the average training accuracy.
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Table 6 Rules obtained for C4.5 from the automatic intervals

Id. Range Support (%) Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

Good behavior rules

R1+ F3∈[0.7523,MAX] 36.76 99.73 5.94 98.72 9.40

R2+ N1∈[0.0,0.145] 55.88 99.20 5.41 97.48 8.15

R3+ N2∈[0.0,0.3106] 53.24 98.88 5.09 97.36 8.04

R4+ N3∈[0.0,0.09234] 57.06 99.17 5.39 97.33 8.01

R5+ L1∈[0.3267,0.549] 24.41 98.87 5.08 97.33 8.00

R6+ L2∈[0.0,0.09773] 46.47 98.86 5.08 97.37 8.05

R7+ L3∈[0.00544,0.06439] 33.53 98.77 4.99 97.40 8.08

R8+ T1∈[0.0,0.9705] 45.88 99.24 5.46 97.54 8.21

R9+ T2∈[65.62,74.0] 31.18 99.62 5.83 98.43 9.11

Bad behavior rules

R1− F1∈[0.02005,1.204] 40.29 89.04 −4.75 81.31 −8.02

R2− F3∈[0.00675,0.7508] 47.35 89.05 −4.74 81.31 −8.01

R3− N1∈[0.3165,MAX] 31.76 83.71 −10.08 74.92 −14.41

R4− N2∈[0.6227,MAX] 25.88 82.41 −11.38 73.82 −15.50

R5− N3∈[0.1846,MAX] 30.29 83.24 −10.54 74.51 −14.81

R6− N4∈[0.2976,MAX] 20.59 80.49 −13.30 73.74 −15.58

R7− L1∈[0.8093,MAX] 29.12 86.63 −7.16 79.32 −10.00

R8− L2∈[0.2889,MAX] 28.53 83.76 −10.03 73.95 −15.37

R9− L3∈[0.2552,MAX] 30.00 84.14 −9.65 74.56 −14.76

R10− T1∈[0.9919,MAX] 39.41 87.26 −6.53 81.18 −8.14

R11− T2∈[82.0,MAX] 24.71 86.10 −7.68 80.49 −8.84

• The column “% Test, SD” shows the average accuracy in test of all the examples, which
are covered by the rule. The standard deviation of the average test accuracy is computed
as well.
• The column “Test Difference” contains the difference between the test accuracy of the

rule and the average test accuracy.

As we can observe in these tables, the positive rules (denoted with a “+” symbol in their
identifier) always show a positive difference with the global average, both in training and test
accuracy. The negative ones (with a “−” symbol in their identifier) verify the opposite case.

The support of the rules shows us that we can characterize a wide range of datasets and
obtain significant differences in accuracy greater and equal to the threshold used as parameter
by the automatic extraction method. The differences for the good behavior rules in test are
very close to such threshold parameter value given in the case of C4.5 and SVM. This is
not the case for all the bad behavior rules, where the differences are usually greater than
threshold. This means that the overfitting limit is more determinant for the bad behavior
rules, while in the good behavior ones, it is less so.

An interesting fact is that the automatic extraction method uses the N1, N3, L1 and L2
DCMs in order to characterize the good datasets for the three classifiers. These measures deal
with the percentage of examples in the class boundaries and their separation, and constitute
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Table 7 Rules obtained for SVM from the automatic intervals

Id. Range Support (%) Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

Good behavior rules

R1+ F3∈[1.0,MAX] 24.41 99.78 6.57 99.59 9.29

R2+ N1∈[0.0,0.12] 54.12 99.13 5.92 98.30 8.00

R3+ N2∈[0.0,0.1897] 41.18 99.25 6.04 98.34 8.04

R4+ N3∈[0.0,0.07299] 53.53 99.10 5.89 98.30 8.00

R5+ N4∈[0.0,0.04481] 25.00 99.49 6.28 98.41 8.12

R6+ L1∈[0.316,0.5211] 20.88 98.95 5.73 98.43 8.13

R7+ L2∈[0.0,0.08106] 42.35 99.31 6.10 98.33 8.03

R8+ L3∈[0.00544,0.02045] 16.76 99.36 6.15 98.48 8.19

R9+ T1∈[0.0,0.9536] 37.35 99.16 5.95 98.63 8.34

R10+ T2∈[65.62,74.0] 31.18 99.00 5.79 98.52 8.22

Bad behavior rules

R1− F1∈[0.02005,1.093] 38.53 86.57 −6.64 82.28 −8.01

R2− F2∈[0.02686,0.75] 19.12 85.97 −7.24 81.19 −9.11

R3− F3∈[0.00941,0.6803] 44.12 86.26 −6.95 82.13 −8.17

R4− N1∈[0.2569,MAX] 32.35 82.62 −10.60 76.38 −13.91

R5− N2∈[0.6099,MAX] 26.76 82.27 −10.95 76.20 −14.09

R6− N3∈[0.1743,MAX] 31.47 82.72 −10.49 76.42 −13.88

R7− N4∈[0.2982,MAX] 20.00 81.04 −12.17 74.98 −15.31

R8− L1∈[0.8093,3.104] 23.82 81.92 −11.29 76.53 −13.76

R9− L2∈[0.3377,MAX] 24.12 80.74 −12.47 74.21 −16.08

R10− L3∈[0.2513,MAX] 30.29 82.78 −10.44 76.33 −13.96

the core of the measures of separability of classes, indicating that it is a key aspect to their
performance. Apart from this core of measures, the automatic extraction method picks an
extra set of measure for each classifier due to their different nature complementing the
aforementioned four measures. As stated in [26], it can be expected that using more similar
methods will produce greater coincidences in the extracted intervals. SVM and K-NN appear
to share more of the complexity space in which they perform well than C4.5, whose good
behavior can be described with less DCMs, indicating that it is less sensitive to geometrical
properties in the data that may benefit it.

The intervals for the classifiers’ bad behavior use approximately the same number of
measures for each one, showing that the sources of difficulty of the data affect roughly simi-
larly the three classifiers. However, while C4.5 and SVM bad performance can be described
by fewer and larger intervals, K-NN shows prominent bad behavior for more and smaller
regions. The less consistent performance of K-NN isolates small regions of the complexity
space where the requirements are met.

With these simple and individual rules, an initial characterization of the datasets for which
good or bad behavior is obtained for the classifiers can be considered. These individual rules
can be used to describe the domains of competence of C4.5, SVM and K-NN, but some
drawbacks can be pointed out:
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Table 8 Rules obtained for K-NN from the automatic intervals

Id. Range Support (%) Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

Good behavior rules

R1+ F3∈[0.8271,MAX] 35.29 99.07 9.32 99.15 9.07

R2+ N1∈[0.0,0.1529] 57.06 98.14 8.39 98.18 8.11

R3+ N2∈[0.0,0.2305] 47.94 98.22 8.47 98.28 8.2

R4+ N3∈[0.0,0.06667] 52.06 98.41 8.66 98.48 8.41

R5+ N4∈[0.0,0.04717] 25.88 97.98 8.23 98.11 8.04

R6+ L1∈[0.316,0.5172] 20.29 98.48 8.73 98.53 8.46

R7+ L2∈[0.0,0.07197] 40 98.17 8.42 98.24 8.17

R8+ L3∈[0.0,0.02251] 31.47 98.21 8.46 98.32 8.25

R9+ T1∈[0.0,0.9536] 37.35 98.63 8.88 98.69 8.61

R10+ T2∈[65.62,82.0] 31.47 98.65 8.9 98.65 8.57

Bad behavior rules

R1− F1∈[0.0,1.001] 39.41 81.48 −8.27 81.94 −8.14

R2− F2∈[0.02763,0.75] 18.82 80.86 −8.89 81.27 −8.80

R3− F3∈[0.00675,0.6121] 42.94 81.49 −8.26 81.99 −8.09

R4− N1∈[0.401,MAX] 22.35 71.61 −18.14 72.22 −17.86

R5− N2∈[0.7149,MAX] 20.29 74.77 −14.98 75.07 −15.01

R6− N3∈[0.2555,MAX] 20.88 71.28 −18.47 71.78 −18.30

R7− N4∈[0.3094,MAX] 19.12 73.09 −16.66 73.39 −16.69

R8− L1∈[0.8453,11.04] 23.24 81.40 −8.35 81.91 −8.16

R9− L3∈[0.487,MAX] 19.12 73.23 −16.52 74.13 −15.94

R10− T1∈[0.9948,MAX] 36.76 81.58 −8.17 81.92 −8.15

R11− T2∈[109.6,1165.0] 21.76 81.48 −8.27 81.61 −8.46

• It is very likely that good or bad datasets for the classifiers are identified each one as so
by different rules, that is, different rules are capturing the same datasets as good/bad for
the classifier constituting a redundant description of the domains of competence.
• It is possible that the application of the rules to a new dataset yields both good and bad

behavior output. This case is presented when such a new dataset is covered by good and
bad behavior rules simultaneously for two different DCMs.

Due to these reasons, a simpler and univocal representation of the domains of competence
is desired. To do so, we consider the grouping and combination of the different rules in the
following section.

6.2 Combination of the individual rules

The objective of this section is to analyze the effect of combining the rules to overcome the
limitations presented by the description provided by their individual use. We consider the
disjunctive combination (we use the or operator) of all the positive rules to obtain a single rule
(Positive Rule Disjunction -PRD-). The same procedure is performed with all the negative
ones so we obtain another rule (Negative Rule Disjunction -NRD-). The new rules will be
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activated if any of the component rules’ antecedents are verified using the disjunctive normal
form. By means of merging the individual rules, we can arrive at a more general description,
with a wider support, of the behavior of the classifiers’ methods. PRD and NRD rules avoid
the redundancy of the single rules as they group all the good or bad sources of complexity
for a given dataset in a single rule.

As stated previously, the PRD and NRD rules may present overlapping in their support,
but a mutually exclusive description of the good and bad regions is desirable [25]. In order
to tackle this issue, we consider the conjunctive operator and (∧) and the difference operator
and not (∧�) between the PRD and NRD rules. The difference will remove the datasets for
which the classifiers present good or bad behavior from the disjunctive negative or positive
rules, respectively. That is, by means of the difference, we intend to remove the datasets of
the opposite type from the considered disjunctive rule. Thus, we obtain three different kinds
of intersection and an extra region:

• Intersection of positive disjunction and the negative disjunction (PRD∧NRD).
• Intersection of positive disjunction and not the negative disjunction (PRD∧�NRD).
• Intersection of negative disjunction and not the positive disjunction (NRD∧�PRD).
• Not characterized region, in which no rule covers its datasets.

In Table 9, we depict the new collective rules for the classifiers. From them, we can point
out the following for the two classifiers:

• The Positive Rule Disjunction (PRD) offers a higher support than the single rules for all the
three classifiers. It also gives a good training and test accuracy comparable to the threshold
value.
• The Negative Rule Disjunction (NRD) obtains a wider support as well. However, the

differences in both training and test have decreased due to this increment in support with
respect to the single rules of bad behavior. That means that the individual rules that shape
NRD usually contain datasets with good behavior that hinder the test accuracy difference
as they sum up.
• The Positive and Negative Rule Disjunction (PRD∧NRD) is similar to PRD in the training

and test accuracy difference, and it represents the good dataset for the classifiers covered
by the rules of bad behavior that decrease the test difference in NRD. It roughly represents
one third of the datasets contained in PRD.
• The Positive and Not Negative Rule Disjunction (PRD∧�NRD) has a lower support than

PRD∧NRD, but its difference is higher than PRD and PRD∧NRD rules, since the datasets
with low accuracy for the classifiers present in NRD have been removed in PRD∧NRD.
• The Negative and Not Positive Rule Disjunction (NRD∧�PRD) is a good rule to describe

the bad behavior of the classifiers. It has a high support and a high difference in both
training and test sets. When removing the good datasets of PRD∧NRD, the NRD∧�PRD
rule becomes more accurate in the description of the bad datasets for the classifier.
• Only C4.5 has datasets not characterized by either the PRD rule or the NRD, and it presents

a small support and a small difference from the global accuracy both in training and test.

From all the disjunctive and new conjunctive rules, we can present PRD as a representative
description of good datasets and NRD∧�PRD as a representative description for bad datasets
when using the classifiers. While a DCM only analyzes one difficulty source at once, it may
happen that a difficult dataset for one DCM is actually an easy problem from the point of view
of other(s) DCMs. A problem will be usually easy if one of the DCMs used in the domains
of competence of the method indicates so. Thus, we can rely in the PRD definition with a
higher degree of confidence than NRD: if a dataset is covered by PRD, it will be surely a
good behavior problem for the classifier.
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Table 9 Disjunctive rules from all simple rules for C4.5, SVM and K-NN

Id. Range Support
(%)

Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

C4.5

PRD If R1+ or …or
R9+ then good
behavior

67.35 98.45 4.67 96.27 6.95

NRD If R1− or …or
R11−then bad
behavior

77.65 92.08 −1.71 86.58 −2.75

PRD ∧NRD If PRD and NRD
then good
behavior

45.00 97.82 4.04 94.98 5.65

PRD ∧� NRD If PRD and not
NRD then good
behavior

22.35 99.73 5.94 98.87 9.55

NRD∧�PRD If NRD and not
PRD then bad
behavior

32.65 84.15 −9.63 74.99 −14.33

Not characterized If not PRD and not
(NRD∧�PRD)
then uknown
behavior

0.00 – – – –

SVM

PRD If R1+ or …or
R10+ then good
behavior

62.94 98.61 5.39 97.46 7.16

NRD If R1− or …or
R10−then bad
behavior

65.29 90.02 −3.20 86.14 −4.16

PRD ∧NRD If PRD and NRD
then good
behavior

28.53 97.82 4.60 96.56 6.26

PRD ∧� NRD If PRD and not
NRD then good
behavior

34.41 99.26 6.05 98.21 7.91

NRD∧�PRD If NRD and not
PRD then bad
behavior

36.76 83.96 −9.25 78.05 −12.24

Not characterized If not PRD and not
(NRD∧�PRD)
then uknown
behavior

0.29 94.93 1.72 87.83 −2.47

K-NN

PRD If R1+ or …or
R10+ then good
behavior

63.24 97.17 7.42 97.28 7.21

NRD If R1− or …or
R11− then bad
behavior

74.12 86.48 −3.27 86.92 −3.16

PRD ∧NRD If PRD and NRD
then good
behavior

37.35 95.82 6.07 96.02 5.94
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Table 9 continued

Id. Range Support
(%)

Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

PRD ∧� NRD If PRD and not
NRD then good
behavior

25.88 99.12 9.37 99.11 9.04

NRD∧�PRD If NRD and not
PRD then bad
behavior

36.76 76.98 −12.77 77.67 −12.40

Not characterized If not PRD and not
(NRD∧�PRD)
then unknown
behavior

0.00 – – – –
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Fig. 8 C4.5 block representation for PRD, NRD∧�PRD and not characterized datasets

One main advantage is that these rules are mutually exclusive providing an unique descrip-
tion for an unseen dataset. We can consider a representation of the 340 datasets in three blocks
datasets with their respective support. In Figs. 8, 9 and 10, we depict the three block regions
for the C4.5, SVM and K-NN, respectively. On the left block, the datasets covered by PRD
are depicted. On the center block, the datasets covered by NRD∧�PRD are plotted. The small
region in the right corresponds to the not characterized datasets if any.

From Figs. 8, 9 and 10, we can observe that the 100 % of the analyzed datasets are
characterized except for SVM with a 99 % of coverage. Using the ad-hoc extraction method in
[25], the equivalent PRD and NRD∧�PRD rules only covered 75 % of the datasets for the FH-
GBML method, approximately 25 % less. Thus, the use of the automatic extraction method
clearly outperforms the ad-hoc approach, improving the characterization of the datasets
using the DCMs, as it is capable of overcoming the limitations derived from a human-driven
procedure. The final description of the domains of competence of good behavior and bad
behavior characterization for each classifier can be achieved by the PRD and NRD∧�PRD
rules.
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Fig. 10 K-NN block representation for PRD, NRD∧�PRD and not characterized datasets

6.3 Validation of the domains of competence

Once we have obtained a set of descriptive rules of the domains of competence for the three
classifiers with the automatic extraction method, their domains of competence have been
established. They provide the description of the datasets that result easy or difficult for their
learning phase both descriptively, by means of the DCMs involved, and quantitatively, by
means of the rules presented in the previous section.

The domains of competence have little use if they do not yield comparable results with
unseen datasets that were not used in the extraction step by the automatic extraction method.
In order to validate and evaluate how well these domains of competence generalize for new
cases, we use an extra bunch of datasets, which have not been considered previously.

As described in Sect. 5.1, we validate the PRD and NRD∧�PRD rules using a set of 1,383
fresh datasets. In Table 10, we summarize the average training and test accuracy values for
each classifier. As it can be seen, the test accuracy values are comparable to those obtained
in Table 4, while the standard deviation is higher due to the large number of datasets used to
validate.
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Table 10 Global average
training and test accuracy/SD for
C4.5, SVM and K-NN over the
validation datasets

% Accuracy training & SD % Accuracy test & SD

C4.5 95.20 % ± 8.36 90.94 % ± 14.10

SVM 95.37 % ± 8.47 92.26 % ± 14.06

K-NN 91.80 % ± 14.76 91.86 % ± 14.68

Table 11 Validation results for PRD and NRD∧�PRD rules

Id. Support (%) Training
accuracy
(%)

Training
difference

Test accuracy
(%)

Test difference

C4.5

PRD 77.58 99.57 4.24 98.11 7.19

NRD-PRD 22.42 80.66 −14.67 66.02 −24.89

Not characterized 0.00 − − − −
SVM

PRD 77.30 99.91 4.16 99.77 7.35

NRD-PRD 22.70 81.58 −14.17 67.40 −25.03

Not characterized 0.00 – – – –

K−NN

PRD 77.66 99.43 7.56 99.44 7.51

NRD-PRD 22.34 65.60 −26.27 65.81 −26.12

Not characterized 0.00 – – – –
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Fig. 11 C4.5 block representation for PRD and NRD∧�PRD for validation datasets

Using the software to validate the intervals, we present Table 11 with the average training
and test accuracy of the dataset covered by the PRD and NRD∧�PRD rules for each classifier
and the difference from the global average of the new 1,383 datasets. The data showed in
Table 11 are plotted as a three blocks representation in Figs. 11, 12 and 13 and in a similar
fashion to those depicted in Figs. 8, 9 and 10, respectively, to better visualize the validation
results.
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Fig. 13 K-NN block representation for PRD and NRD∧�PRD for validation datasets

From these results, we can observe the following:

• It can be appreciated that the PRD rule covers the datasets for which the classifiers attain
an outstanding accuracy, while the NRD∧�PRD takes the datasets that verify the opposite.
Only a few outliers are identified as good while presenting a poor accuracy in a ration of
10–1,000.
• The differences in test accuracy for the three classifiers in training and test are similar to

those showed by the rules PRD and NRD∧�PRD in Table 9 that act as a threshold for the
domains of competence differentiation, even using 4 times more datasets.
• All the validation datasets are characterized showing the good generalization of the

domains of competence obtained.

For the classifiers considered, their particular PRD and NRD∧�PRD rules have a support of
approximately 75 % and 25 % each, which accurately represent the balance of the good and
bad datasets used for validation. It is reasonable to expect that most unseen datasets can be
classified by the domains of competence. It is also important to stress that the definitions of
good and bad behavior intervals given in Sect. 4 are independent of the classifier. Thus, the
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PRD and NRD∧�PRD rules obtained from the use of the automatic extraction method can
predict the behavior of any classifier by defining its domains of competence.

7 Concluding remarks

In the present paper, we have proposed a new automatic extraction method to obtain the
domains of competence of a classifier, which allows to predict if any dataset will be suitable for
such learning method or not. This automatic extraction method uses a set of data complexity
metrics, which measure characteristics of the data independently of the learning method,
enabling it to be applied over any classifier.

In order to check the validity of the proposal, we have performed a thorough study over
a large set of binary datasets with three classical classifiers very different in their nature,
and so, we can confirm the capabilities of this proposal: C4.5, SVM and K-NN. First, we
have computed 12 data complexity measures for each dataset. We have used the automatic
extraction method providing a significant margin with respect to the average classifier’s
behavior, to identify the good and bad problems for each classifier and to obtain a different
set of intervals based on the information provided by the data complexity measures. Then, we
have built descriptive rules from these intervals, and we have studied the interaction between
them obtaining as a final result two rules which codify the domains of competence of the
classifier. These rules describe the characteristics of the datasets that belong or not to the
“sweet spot” of one classifier independently from the others, unlike previous proposals in
the literature where cross comparisons are needed.

We have validated these rules with a large extra benchmark of datasets in order to check
their generalization and prediction capabilities of the pair of rules that conform the domains of
competence of each classifier. The results show that from a reduced bunch of datasets, around
three hundred samples, the obtained domains of competence are general enough to identify the
datasets suitable for the classifier maintaining the margin given to the automatic extraction
method. Thanks to this proposal, we present the possibility of determining automatically
which datasets will prove to be good or bad for the classifiers in advance to their execution
using the data complexity measures once the domains of competence of the classifier have
been established.

We must point out that this is a study that uses three specific methods as a representative set
and can be extended as long as the data complexity measures for a dataset can be calculated.
This work presents a new challenge that could be extended to other learning methods, to
automatically analyze their domains of competence and to develop new measures, which
could provide us with more information on the behavior of classifiers for data mining. New
questions such as to analyze the interpretation/connection between datasets in the same
expertise domain, applying this proposal in real world datasets or the minimum amount of
datasets required to establish the intervals also arise and will be tackled in future research.
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